Ensemble Pruning Via Semi-definite Programming
نویسندگان
چکیده
An ensemble is a group of learning models that jointly solve a problem. However, the ensembles generated by existing techniques are sometimes unnecessarily large, which can lead to extra memory usage, computational costs, and occasional decreases in effectiveness. The purpose of ensemble pruning is to search for a good subset of ensemble members that performs as well as, or better than, the original ensemble. This subset selection problem is a combinatorial optimization problem and thus finding the exact optimal solution is computationally prohibitive. Various heuristic methods have been developed to obtain an approximate solution. However, most of the existing heuristics use simple greedy search as the optimization method, which lacks either theoretical or empirical quality guarantees. In this paper, the ensemble subset selection problem is formulated as a quadratic integer programming problem. By applying semi-definite programming (SDP) as a solution technique, we are able to get better approximate solutions. Computational experiments show that this SDP-based pruning algorithm outperforms other heuristics in the literature. Its application in a classifier-sharing study also demonstrates the effectiveness of the method.
منابع مشابه
Learning to Diversify via Weighted Kernels for Classifier Ensemble
Classifier ensemble generally should combine diverse component classifiers. However, it is difficult to give a definitive connection between diversity measure and ensemble accuracy. Given a list of available component classifiers, how to adaptively and diversely ensemble classifiers becomes a big challenge in the literature. In this paper, we argue that diversity, not direct diversity on sample...
متن کاملOptimally Pruning Decision Tree Ensembles With Feature Cost
We consider the problem of learning decision rules for prediction with feature budget constraint. In particular, we are interested in pruning an ensemble of decision trees to reduce expected feature cost while maintaining high prediction accuracy for any test example. We propose a novel 0-1 integer program formulation for ensemble pruning. Our pruning formulation is general it takes any ensembl...
متن کاملMultilayer Ensemble Pruning via Novel Multi-sub-swarm Particle Swarm Optimization
Recently, classifier ensemble methods are gaining more and more attention in the machine-learning and data-mining communities. In most cases, the performance of an ensemble is better than a single classifier. Many methods for creating diverse classifiers were developed during the past decade. When these diverse classifiers are generated, it is important to select the proper base classifier to j...
متن کاملPersonalized Classifier Ensemble Pruning Framework for Mobile Crowdsourcing
Ensemble learning has been widely employed by mobile applications, ranging from environmental sensing to activity recognitions. One of the fundamental issue in ensemble learning is the trade-off between classification accuracy and computational costs, which is the goal of ensemble pruning. During crowdsourcing, the centralized aggregator releases ensemble learning models to a large number of mo...
متن کاملPruning Techniques for Mixed Ensembles of Genetic Programming Models
The objective of this paper is to define an effective strategy for building an ensemble of Genetic Programming (GP) models. Ensemble methods are widely used in machine learning due to their features: they average out biases, they reduce the variance and they usually generalize better than single models. Despite these advantages, building ensemble of GP models is not a well-developed topic in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 7 شماره
صفحات -
تاریخ انتشار 2006